
AI for TSP Competition
Problem statement

Laurens Bliek2, Tom Catshoek1, Paulo de Oliveira da Costa2, Reza Refaei Afshar2, Daniël Vos1,
Sicco Verwer1, Yingqian Zhang2

1 Delft University of Technology, Netherlands
2 Eindhoven University of Technology, Netherlands

1 Introduction
The goal of this competition is to design AI methods to solve
logistics problems such as variants of the traveling salesman
problem (TSP). In such problems, the goal is to find a route
through a network that maximizes some reward. There are
two tracks that each require knowledge of a different subfield
of AI:

• Track 1: online supervised learning / surrogate models.
Given one instance, previously tried routes, and the re-
ward for those routes, the goal is to learn a model that
can predict the reward for a new route. Then an opti-
mizer finds the route that gives the best reward according
to that model, and that route is evaluated, giving a new
data point. Then the model is updated, and this iterative
procedure continues for a fixed number of steps. Over
time, the model becomes more accurate, giving better
and better routes. This procedure is used in surrogate-
based algorithms such as Bayesian optimization [Shahri-
ari et al., 2016].

• Track 2: reinforcement learning. We consider an envi-
ronment (simulator) that can generate multiple instances
from a set of instances I following the same distribu-
tion and expects as output (partial) solutions contain-
ing the order at which the nodes should be visited. The
simulator returns general instance features and the time-
dependent cost for traversing the last edge in a given
solution. The goal is to minimize the cost of the to-
tal path over multiple samples of selected test instances.
This procedure is related to Reinforcement Learning and
Neural Combinatorial Optimization [Bello et al., 2017].

2 Problem description
The code for the two tracks can be found at https://
github.com/paulorocosta/ai-for-tsp-competition. Both tracks
will look at the time-dependent orienteering problem with
stochastic weights and time windows (TD-OPSWTW) [Ver-
beeck et al., 2016], which is a problem similar to the traveling
salesman problem (TSP) where nodes need to be visited in a
certain order. The stochastic and time-dependent constraints
and rewards make this problem particularly difficult to solve
with traditional solvers. For this reason, recently AI methods
have been applied to similar problems in order to overcome

the limitations of OR solvers with machine learning [Kool et
al., 2018; Bliek et al., 2020].

In the TSP the goal is to find the tour with the smallest
cost visiting all locations (customers) in a network exactly
once. However, in practical applications, one rarely knows all
the travel costs between locations precisely. Moreover, there
could be specific time windows at which customers need to
be served, and specific customers can be more valuable than
others. Lastly, the salesman is often constrained by a maxi-
mum capacity or travel time, representing a limiting factor in
the number of nodes that can be visited.

In this competition, we consider a more realistic version
of the classical TSP, i.e., the TD-OPSWTW. In this formu-
lation, the stochastic travel times between locations are only
revealed as the salesman travels in the network. The salesman
starts from a depot and must return to the depot at the end of
the tour. Moreover, each node (customer) in the network has
its prize, representing how important it is to visit a given cus-
tomer on a tour. Each node has associated time windows. We
consider that a salesman may arrive earlier at a node with-
out compromising its prize, but the salesman has to wait until
the opening times to serve the customer. Lastly, the salesman
must not violate a total travel time budget while collecting
prizes in the network. The goal is to collect the most prizes in
the network while respecting the time windows and the total
travel time of a tour allowed to the salesman.

2.1 Problem instances
A set of problem instances are generated and provided for the
participants. Each problem instance contains n nodes in 2D
space. Each node has a x-coordinate, a y-coordinate, lower
and upper bounds of its time window, prizes and the maxi-
mum tour time. The time windows determine the desired pe-
riod of visiting a particular node. If the time of visiting a node
is within the time window (or before), the prize is collected.

The problem instances are generated in three steps. First,
the coordinates of the nodes are generated randomly between
a lower and an upper bound. The location of the nodes are
fixed; however, the distances between the nodes are noisy and
they might be different in different runs.

Second, the time window of each node is generated around
the time of visiting that node in second nearest neighbor tour.
In more detail, let ti be the time of visiting node i in the sec-
ond nearest neighbor tour. The left side of the time window

https://github.com/paulorocosta/ai-for-tsp-competition
https://github.com/paulorocosta/ai-for-tsp-competition


CUSTNO XCOORD YCOORD TW_LOW TW_HIGH PRIZE MAX_T
1 47.0 24.0 0 285 0.0 256
2 38.0 15.0 102 198 0.19 256
3 53.0 49.0 9 52 0.38 256
4 116.0 23.0 30 137 1.0 256

Table 1: A sample problem instance with 4 nodes.

is a randomly generated number between ti−w and ti where
w is an arbitrary integer. Similarly, the right side of the time
window is a random number between ti and ti + w.

Third, the prize of each node is determined according to
the L2 distances between the nodes and depot. In order to
prevent infinite loops which can gain very large total prize,
each problem instance has a max length that determines the
maximum length of a solution. All solutions longer than max
length are penalized.

As a simple example, assume that there are 4 nodes that
each one has a time window and a prize, and let us ignore
that travel times between nodes are stochastic. An illustra-
tion of this example is shown in Table 1. Each row of this
table corresponds to a particular node and the columns are
defined as follows: CUSTNO is an integer identifier for the
nodes. XCOORD and YCOORD are the coordinate of a
node. TW_LOW and TW_HIGH are the left side and right
side of the time window respectively. Finally, PRIZE is the
prize of each node. Let the max length MAX_T be 256. A
possible tour for this example is 1 → 2 → 3 → 4 → 1.
Total length of this tour using rounded distances between the
nodes is 187 and the time of visiting nodes 1, 2, 3 and 4 are
0, 13, 50 and 118 respectively. At time 13, an agent visits
node 2; however, it needs to wait until time 102 in order to
collect the prize of this node. If the agent leaves node 2 after
collecting its prize, it gets to node 3 after closing its time win-
dow. Therefore, the agent misses the prize of node 3. Then, it
can get to node 4 within its time window and collect its prize.
Therefore, the total prize of this tour is 1.19.

2.2 Differences with TSP
To summarize, the main differences between the problem in
this competition and the traveling salesman problem are:

• Not all nodes need to be visited: it is allowed to never
visit some nodes.

• Visiting a node after the node’s opening time and before
its closing time gives a reward.

• Visiting a node after its closing time gives a penalty
(negative reward).

• When visiting a node before its opening time, the agent
has to wait until the node opens.

• The time it takes to travel from one node to the other is
stochastic.

• The travel times do not directly appear in the objective
function, the only thing that matters is the reward.

3 Track 1
Contact: Laurens Bliek, l.bliek@tue.nl

The goal of track 1 is to solve an optimization problem
related to one instance of the TD-OPSWTW problem, finding
the route that maximizes the reward. The reward of a route
can be represented as a black-box function f(s, i), taking as
input the instance i and a route s. The optimization problem
is then denoted as:

s∗ = argmax
s

E[f(s, i)] (1)

for a given instance i. We use the expected value because
the simulator is stochastic: it can give different rewards even
if the same route is evaluated multiple times. The expected
value for a route s is approximated by evaluating f(s, i) for
that route 10 000 times and calculating the average reward.
This computation takes multiple seconds on standard hard-
ware. Therefore, the problem can be seen as an expensive op-
timization problem. Surrogate-based optimization methods
such as Bayesian optimization [Shahriari et al., 2016], which
approximate the expensive objective using online supervised
learning, are known to perform well on this type of problems.

The route s indicates in which order to visit the nodes
in the network. It has to take on the specific form s =
[1, s1, . . . , sn], with n the number of nodes and s1, . . . , sn
containing all integers from 1 to n. This means that the num-
ber 1 will appear twice in the solution. As this number in-
dicates the starting node, it means that the route consists of
starting from the starting node, visiting any number of nodes,
then returning to the starting node at some point. Any nodes
that appear in the route after returning to the starting node are
ignored.

3.1 Surrogate-based optimization
The problem from this track can in theory be tackled with
any black-box optimization technique. However, the number
of simulator calls is in practice limited due to the time it takes
to calculate the average over all the Monte Carlo samples.
For this reason, surrogate-based algorithms are particularly
useful. These algorithms approximate the black-box func-
tion f in every iteration with a surrogate model g (the online
learning problem), then optimize g instead (the optimization
problem). Both the results of learning and optimization be-
come better with each simulator call as more data becomes
available. The problem is split into two sub-problems that are
solved every time a route is given as input to the simulator:

1. Given the paths tried up until now and their correspond-
ing rewards, learn a model that can predict for any new
path how promising that path would be.

2. Optimize the model of the previous step to suggest the
most promising path to try next. Then this path is given
as input to the simulator.

l.bliek@tue.nl


The first step can be seen as an online learning problem,
where new data comes in at every iteration and rewards need
to be predicted. It also corresponds to the concept of an acqui-
sition function in Bayesian optimization. In step 2, standard
optimization methods can be used.

3.2 Baseline
As a baseline method, we provide an implementation of
a standard Bayesian optimization algorithm using Gaussian
processes [Shahriari et al., 2016]. For this implementa-
tion, we use the bayesian-optimization Python pack-
age1, after transforming the input space using the approach
in [Bliek et al., 2020] and rounding solutions to the nearest
integer.

4 Track 2
Contact: Paulo da Costa, p.r.d.oliveira.da.costa@tue.nl

In this track we consider Reinforcement Learning (RL)
methods. In the Reinforcement Learning (RL) track, we are
interested in a policy π mapping states to action probabili-
ties. A policy in the TD-OPSWTW selects the next node to
be visited given a sequence of previously visited nodes. Note
that to cope with the stochastic travel times, a policy must be
adaptive. Therefore, a policy needs to consider the instance
information to construct tours dynamically that respect the
time windows of nodes and the total tour time allowed for the
instance. Note that unlike Track 1, we are interested in gen-
eral policies applicable to any instance of the TD-OPSWTW
in the training distribution.

More formally, we adopt a standard Markov Decision Pro-
cess (MDP) M = 〈S,A,P, r〉 where S is the state space,
A is the action space, P(s′|s, a) is the transition distribution
after taking action a at state s, r(s, a) is the reward func-
tion. Where the state space is composed of partial tours (or a
node), the action space is comprised of the remaining nodes
to be visited and the rewards are the sum of prizes and penal-
ties collected at each step. Thus the main objective is to find
a policy π∗ such that

π∗ = argmax
π

Eπ

[
n−1∑
i=0

r(s0:i, ai)

]
. (2)

Note that for simplicity we assume that we always start
from the depot, i.e., s0 = 1. Figure 1 shows an example of a
next node visitation decision that has to be made by a policy
visiting n = 6 nodes.

In the figure, a policy has visited nodes 1 (depot) and 6
with travel time t1,6 revealed after visiting node 6. Note that
ti,j ∈ N, ∀i, j ∈ {1, . . . , n} are sampled from a r.v. Ti,j ,
i.e., ti,j ∼ Ti,j . At this current decision epoch, the policy
has to choose the next node to visit. The prizes {pi ∈ R}ni=1
and time window bounds {(li, ui) ∈ N2}ni=1 are known and
given in the instance, as well as the maximum allowed tour
time T ∈ N. The decision should consider the prizes of each
node, the time windows, and the total remaining travel time
when selecting the next node (in this case, node 3).

1https://github.com/fmfn/BayesianOptimization

Figure 1: A policy solving the TD-OPSWTW dynamically.

We consider two constraints in the problem, both incurring
penalties {ei ∈ R}ni=1. To avoid penalties and achieve a fea-
sible solution, a policy needs to visit nodes respecting the up-
per bounds of the time windows, i.e., it can violate the lower
bounds and arrive early without penalties. It should also re-
spect the maximum tour time, i.e., L(s) ≤ T where s is a par-
tial solution up until n′ ≤ n and L(s) =

∑n′

i=1 tsi−1,si . Note
that the reward after taking action ai is given by r(s0:i, ai) =
pai + eai .

Moreover, when a policy decides to arrive early at a node,
the travel time gets shifted to the beginning of the time win-
dow. For example, if the travel time between the depot (node
1) and node 6 is lower than l6, the salesman has to wait until l6
to depart from that node. This information becomes available
as soon as the salesman arrives at node 6. Lastly, a policy
must always return to the depot, and this travel time is also
included in the maximum allowed tour time.

Please check the details about the implementation in https:
//github.com/paulorocosta/ai-for-tsp-competition.

4.1 Baseline
We provide a baseline to the RL track based on [Bello et al.,
2017]. Note that this approach is not adaptive and does not
perform well in the given task. This baseline is just a refer-
ence as to how RL can be used. Moreover, it only uses the
coordinates and prizes to make decisions on complete tours.

5 Submission format
When it comes to submitting your results, you upload two
files: the output of your algorithm and a ZIP file containing
your code (for verifying the winners). The expected output of
your algorithm differs between the two tracks:

• Surrogate models track: a file with .out extension con-
taining the nodes to be visited separated by newlines.
Should start with the number ‘1’ and needs to contain
‘1’ twice. See example below.

• Reinforcement learning track: a JSON file containing
‘instance_names’ (str). For each instance, there should

p.r.d.oliveira.da.costa@tue.nl
https://github.com/fmfn/BayesianOptimization
https://github.com/paulorocosta/ai-for-tsp-competition
https://github.com/paulorocosta/ai-for-tsp-competition


be a ‘seed’ (int), a ‘nodes’ (int), followed by N ‘tours’
(array of ints of size n+1), where N < 1000. See exam-
ple below.

5.1 Surrogate models output example
File: example.out

1
3
2
5
1
4

5.2 Reinforcement learning output example
File: example.json

{"instance0001": {
"nodes": 5,
"seed": 12345,
"tours": {

"tour001": [1, 2, 3, 1, 5, 4],
"tour002": [1, 5, 4, 2, 1, 3],
}},

"instance0002": {
"nodes": 4,
"seed": 33333,
"tours":{

"tour001": [1, 2, 1, 3, 4],
"tour002": [1, 3, 1, 2, 4]

}}
}

6 Evaluation/Scoring
Please refer to the competition repository.

7 Sponsors and prize money
This competition is sponsored by Ortec and Vanderlande.
Please see https://www.tspcompetition.com/competition for
information on the prize money.

8 Source Code
For detailed explanation of the code, please see the provided
repository 2.

References
[Bello et al., 2017] Irwan Bello, Hieu Pham, Quoc V. Le,

Mohammad Norouzi, and S. Bengio. Neural combina-
torial optimization with reinforcement learning. ArXiv,
abs/1611.09940, 2017.

[Bliek et al., 2020] Laurens Bliek, Sicco Verwer, and Math-
ijs de Weerdt. Black-box combinatorial optimization using
models with integer-valued minima. Annals of Mathemat-
ics and Artificial Intelligence, pages 1–15, 2020.

2https://github.com/paulorocosta/ai-for-tsp-competition

[Kool et al., 2018] Wouter Kool, Herke Van Hoof, and Max
Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

[Shahriari et al., 2016] B. Shahriari, Kevin Swersky, Ziyu
Wang, R. Adams, and N. D. Freitas. Taking the human
out of the loop: A review of bayesian optimization. Pro-
ceedings of the IEEE, 104:148–175, 2016.

[Verbeeck et al., 2016] C Verbeeck, Pieter Vansteenwegen,
and E-H Aghezzaf. Solving the stochastic time-dependent
orienteering problem with time windows. European Jour-
nal of Operational Research, 255(3):699–718, 2016.

https://www.tspcompetition.com/competition
https://github.com/paulorocosta/ai-for-tsp-competition

	Introduction
	Problem description
	Problem instances
	Differences with TSP

	Track 1
	Surrogate-based optimization
	Baseline

	Track 2 
	Baseline

	Submission format
	Surrogate models output example
	Reinforcement learning output example

	Evaluation/Scoring
	Sponsors and prize money
	Source Code

